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Scene Classification using Scene Parsing, NLP and Neural Networks

Abstract

The recent state of the art scene classification models
use Convolutional Neural Networks to perform the scene
classification task. To improve the accuracy of these
models further, several statistical correlation methods
can be applied to the output of these CNN’s. We present
a few such correlation approaches in this text. We
present use of standard TF-IDF and Word Vector and
NLP approaches. We also compare them against a Neu-
ral Network implementation which gives an accuracy of
82% on the test dataset of [3]. As a part of our model,
we obtain object labels of an image using state of the art
scene parsing [13]. We experiment with information re-
trieval methods, word embeddings and Neural networks
for mapping the correlation between object labels and
scenes for refining the probabilities in scene classifica-
tion.

1. Introduction

Our project aims to find accurate methods for gener-
ating a correlation between objects in a scene and the
corresponding scene category, that can be used to refine
the accuracy of a scene classification CNN model. State
of the art scene classification model has an accuracy of
55.24% on the Places365 data-set[3]. The accuracy can
be improved by refining the probabilities corresponding
to top-5 scenes by using frequency-based approaches in
Natural Language Processing over the contextual infor-
mation provided by objects in the scene. Additionally,
we also check the effectiveness of a neural network for
mapping a scene based on the objects in the scene.

2. Background / Related Work

The work by Zhou et. al. [5] introduced the ADE20K
dataset, which is a densely annotated dataset with the
instances of objects, and their parts, covering a diverse
set of visual concepts in the scenes. The dataset was
carefully annotated by a single annotator to ensure pre-
cise object boundaries within the image and the consis-
tency of object naming across the images. Benchmarks

MultiScale Mean Pixel
Architecture Testing loU Accuracy(%)

MobileNetV2dilated + No 3484 7575

C1_deepsup Yes 33.84 76.80

MobileNetV2dilated + No 3576 7777

PPM_deepsup Yes 36.28 78.26

No 33.82 76.05
ResNet18dilated + C1_deepsup
Yes 3534 77.41

ResNet18dilated + No 38.00 78.64

PPM_deepsup Yes 38.81 79.29

ResNetS0dilated + No 41.26 79.73

PPM_deepsup Ves 4214 80.13

ResNet101dilated + No 4219 80.59

PPM_deepsup Yes 4253 80.91

No 40.44 79.80
UperNets0
Yes 4155 80.23

No 42.00 80.79
UperNet101
Yes 42,66 81.01

No 4203 80.77
HRNetV2
Yes 43.20 81.47

Figure 1. Comparison of various Scene parsing modules

for scene parsing and instance segmentation were con-
structed on the ADE20K dataset[5]. Various state-of-
the-art models were evaluated on the benchmark. Figure
1 contains the performance of various models for scene
parsing.

Scene parsing uses encoder-decoder architecture that
is a staple in semantic segmentation problems.[]5].
The model selected uses Resnet[?] architecture as the
encoder and UperNet[13] as the decoder. The role
of the encoder is to generate low-resolution feature
maps. Often it is achieved by removing the fully-
connected layers from an architecture typically used
for classification. The role of the decoder network is
to map the low-resolution encoder feature maps to the
complete input resolution feature maps for pixel-wise
categorization.

Scene-centric datasets contain images that corre-
spond to a scene category, unlike traditional object
datasets. Scenel5 database [2] was the first benchmark
for scene classification, which initially had 8 scenes
in its dataset[10]. The dataset contains 15 scene cate-
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gories with only a few hundred images in each class,
the near-human performance of 95% has been achieved
a long time ago on this, with so less number of cate-
gories and data, SVM works better than Neural Net-
works in this case. The MIT Indoor67 database [11]
contains 67 categories, which are only Indoor, and no
outdoor categories are considered. The Scene Under-
standing database (SUN) [0] , with 397 categories con-
taining 130,519 images provided a larger coverage of
place categories. SUN seems to lack the amount of data
needed for using deep learning, and hence deep learning
approaches have not worked well on SUN dataset. Other
scene-centric datasets like ImageNet-88, SUN88 were
obtained by considering a subset of the larger object-
centric datasets. ’places365” [3] in scale is similar to the
massive ImageNet dataset. It has 1,803,460 training im-
ages with3,068 to 5,000 images per class. The validation
set has 50 images for every scene category furthermore
the test set has 900 images for every scene category.

Figure 2 shows the various CNN architectures
and their corresponding top-4 and top-1 accuraccy.
We have chosen the pre-trained model with Resnet
architecture[8], for obtaining scene classification results.
Although the model performs better on the training set,
the performance on the validation set doesn’t increase
as much due to overfitting. Other pre-trained models on
Places2 do not seem to have similar issues with over-
fitting, but they do not downsample the images. The
overfitting is mainly due to the downsampling of the im-
ages and only using the Standard dataset. However, af-
ter manually looking at examples of the images in 64x64
resolution and the corresponding predictions the model
clearly has a very good performance and hence, despite
a minor overfitting issue, it is still one of the best models
for scene classification.

Xin Chen et. al. [4] introduced a new method for
Scene Classification using a reduced taxonomy for dif-
ferent indoor environments. Although the system was
designed for use with robots that can recognize differ-
ent indoor places with high accuracy, the methodology
can be used to improve any scene classification model,
which has a lot of context-dependent objects. A hier-
archical taxonomy of places allowed pruning many ir-
relevant classes, thereby reducing the complexity and
training time. The pruning of classes is a useful way
since many of the classes in the dataset are quite sim-
ilar. For example there is little use of separate cate-
gories “restaurant” and “fastfood restaurant”. A word
embedding approach was implemented to refine the top-
5 scores for the scenes. It is demonstrated that context
has the potential to improve the Scene Classification re-

sults to some extent. Since the scene labels of the Places
365 test dataset are not publicly available, the method-
ology was tested with a real-world test dataset that was
built by them to show the real world implementation of
the approach. The results show that there can be an in-
crease in the accuracy using this approach.

Term frequency-inverse document frequency[ ], one
of the approaches that we use to determine correlations
between objects and scenes, is a statistical weight of-
ten used in information retrieval and text mining. This
statistical weight measurement is used to evaluate how
important a word is to a document in a set. The increase
in importance is proportional to the number of times a
word appears in the document, but for a lot of redun-
dant words that do not add value can be offset by the
frequency of the word in the set.

Word embeddings are a type of word representation
that allows words with similar meaning to have a similar
representation. We use GloVe embeddings by Penning-
ton et. al. [7] which is a global log-bilinear regression
model for unsupervised learning of word representations
that outperforms other models like Word2Vec[14] on
word analogy, word similarity, and named entity classi-
fication tasks. The commonly used similarity metrics for
nearest neighbour evaluations return a single scalar that
signifies the correlation between the words. This can
often be an oversimplification since two words almost
always show more complex relations than those that can
be captured by a single number. For instance, a woman
may be regarded as similar to a man in that both words
describe a human being; but, the two words in common
belief are regarded distinct. In order to perceive the re-
finement necessary to distinguish a woman from a man,
we need more than a single number for the word pair.
A natural and simple candidate for an enlarged set of
discriminative numbers is the vector difference between
the two-word vectors. GloVe captures the meaning spec-
ified by the proximity of two words in the form of vector
difference. This makes it suitable to use for our use case.

Other approaches like Bag of Visual Words[9], His-
togram of Oriented Uniform Patters[ 2] have been used
for obtaining image representations and have obtained
good results, but still don’t seem to capture the underly-
ing complex relationships as well as GloVe.

3. Approach

Figure 2 explains our project pipeline. The train-
ing and test dataset used is MIT CSAIL’s Places 365
dataset[3] which has a total of 1.8 million images over
365 unique scene categories. We use the state of the art
Scene Parsing model[13] to detect the objects present
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Validation Set of Places365

Test Set of Places365

Top-1 acc. Top-35 acc. Top-1 acc.  Top-5 acc.
Places365-AlexNet 53.17% 82.89% 53.31% 82.75%
Places365-GoogLeNet 53.63% 83.88% 53.59% 84.01%
Places365-VGG 55.24% 84.91% 55.19% 85.01%
Places365-ResNet 54.74% 85.08% 54.65% 85.07%

Figure 2. Comparison of performance of various CNN architectures
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Figure 3. Overview of our Algorithm

in the training and test dataset images. Further we map
the correlation between the objects present in each im-
age (obtained from [!3]) to the scene labels (obtained
from [3]) and create parameter models. The calculation
of correlation is done using three distinct approaches.
Firstly using TF-IDF method, secondly using word em-
beddings and finally using a Neural Network. The re-
sult of each of these approaches generates a correlation
matrix of their own. It has dimensions |O * S|, where
O is the maximum number of objects the scene parsing
model can detect, and S is the number of possible scenes.
Each element of this matrix W[ODbj.i, Scene j] signifies
the confidence of an object i present to the scene j be-
ing classified. During inference, we perform scene pars-
ing on the image to generate object labels, and using the
parameter matrix, find the scores of each of the scene
classes. The class with maximum score is considered to
be the prediction of the model.

4. Experiments

A large part of the work was obtaining a large amount
of object labels corresponding to a scene category. We
wrote the inferencing code for scene parsing that would
create a dataset that can be used as an input for our ap-

proaches. The optimal hardware platform of choice after
some experimenting was found to be Nvidia T4, which
was cost-effective as well could inference one image in
2-3 seconds. The scene classification challenge con-
tains 5000 images for 365 classes. Since each image
took 3 seconds for inferencing, obtaining object labels
for 365 x 5000 images needed both more compute re-
sources as well as a lot of time. For the sake of our
problem, we consider 10 classes out of the 365 classes.
We consider Auditorium, Bedroom, Coffee shop, Gas
station, Kitchen, Pond, Railroad track, Valley, Industrial
Area, Hospital Room. In the future, given more com-
pute capacity, these approaches can be used for all the
365 classes, or on the reduced classes like the one used
by Xin Chen et. al. [4].

The training dataset contained a total of 50,000
images which had 5,000 images of each scene category.
The test set contained a 1,000 images including 100 im-
ages of each scene category. We measure the accuracy
of each of our approach by the percentage of images
with correct scene label predictions by the model.

NumberofImagesCorrectlyClassified
NumberofImagesinTestSet

Accuracy =
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We compare the results from the three different
ways to solve the problem. TF-IDF[!] technique used
commonly in information retrieval, the second was
finding similarity from the word embeddings and lastly
using a neural network.

4.1. TF - IDF Method

Term Frequency and Inverse Document Frequency
is one of the oldest, most common and popular method
from Information Retrieval used to find relevant docu-
ments in a corpus given a particular word. The TF-IDF
method in IR maps the importance of the presence
of word i in document j. Similarly, we expect that
computing the TF - IDF parameters in this use case
would be a good representation of the correlation of
object(i) in identifying scene(j). Using the idea from
[4], we considered scene as documents and objects
present in them as words. With this tweak, we were able
to compute the TF-IDF object to scene mapping using
the following -

. -y _ No.ofImagesofscenejandImagei
TF (Ob-] l,SCGIlG J) - No.ofimagesofscenej

. N No.of
IDF (ObJeCt 1) - 10g( No.ofscenSSZovsziti?;fngobjecti)
The final matrix is calculated as the element wise

product of the TF and IDF matrices. This matrix will

henceforth be referenced as W(tfidf).

Algorithm 1 TF IDF Approach

Input: Train Dataset D of RGB Images, I €D : D =
i, Io, Is, ..., Is0000]

Train Dataset Class Labels S, = [S71, St2, ... », S1500001]
Train Dataset Dt of RGB Images, I €D : D = [Iy, I,
Is, ..., Iioool

Output: Scene Vector Sies: €[1,1000]whereSy is
scene predicted for Image I of Test Dataset Dt

Objects = Scene Parsing Module(Train Dataset)
W(tfidf) = TF * IDF from (Objects, Class Labels)
Objects test = Scene Parsing Module(Test Dataset)
Scores = Objects test * W(tfidf)

Scenes Vector Si = Max[Scores|i, :|indes 1 €[1, 1000]
Return Scenes Vector

The scene parsing module[ 3], returns a list of ob-
jects present in an image of a total of 335 objects it can
detect. We suitably convert this into a 0 - 1 335 dimen-
sional vector (present or absent vector). The concate-
nation of the vectors of all images is the final Objects

10
11

12

matrix. Using the objects matrix and ground truth class
labels we compute the parameters of the model i.e the
W(tfidf). Objects test matrix is calculated in the same
way as the Objects train matrix above. The scores vec-
tor is computed through a matrix multiplication and the
scene with the maximum score is assigned as the pre-
dicted scene from the model.
We got an accuracy of 66.7% using this model.

4.2. TF-IDF and NLP Model

The TF IDF model can capture the correlation be-
tween objects that are usually present in images of a par-
ticular scene. The model gets better when trained on a
large number of training examples. However, it misses
out on an important property of how similar the scene
and the words are when used in natural language. In
this algorithm, we captured this similarity by creating
the word vectors of the scenes and the objects and then
finding their cosine similarity.

We used the 300 dimensional glove vectors as word
embeddings. The psuedo-code below explains in detail,
how the algorithm works.

Algorithm 2 NLP Approach

Input: Train Dataset D of RGB Images, I, eD : D =
1, 12, I3, ..., I50000]

Train Dataset Class Labels S, = [S71, St2, ... , S150000]
Train Dataset Dt of RGB Images, I, eD : D = [Iy, Ia,

I3, ..., Tioool
Output: Scene Vector Si.s €[1,1000]whereS; is
scene predicted for Image I of Test Dataset Dt

Objects = Scene Parsing Module(Train Dataset)
W(tfidf) = TF * IDF from (Objects, Class Labels)
Objects test = Scene Parsing Module(Test Dataset)
Scenes vectors = Word Vector(scenes)

while For each image do
word vector += W(tfidf [obj(i) * scene(j)] ) * word

vector(i)
Similarities = Cosine Similarity (scenes vectors,
word vector)
Scene predictions [Ik] = Max[Scores (Row i)]index
where i bel. [1, 10]

end

Return Scene predictions

In this algorithm, we compute the TF-IDF matrix as
explained before. However, in this case we multiply this
score with the word vector of the object under consid-
eration and finally sum up the weighted word vectors of
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all the objects present in the image. The cosine similar-
ity of the weighted objects word vector and the scenes
word vector determines the confidence of the objects
present in the image. The scene having the maximum
confidence is the predicted scene by the model.

This model achieves an accuracy of 67.1%.

4.3. Neural Network Approach

In this approach we use neural networks to train a
model to map the correlation between the objects present
in an image to the scene classified. We use the same
objects train matrix from the TF-IDF approach but use
neural networks to learn the parameters of the correla-
tion weight matrix (matrices) and pick the scene with
the maximum score. The pseudo code below shall ex-
plain the details concretely -

Algorithm 3 Neural Network Approach

Input: Train Dataset D of RGB Images, I, eD : D =
1, 1o, I3, ... , I50000]

Train Dataset Class Labels S, =[S, St2, ... , S150000]
Train Dataset Dt of RGB Images, I €D : D = [Iy, I,
I3, ..., Iipool

Output: Scene Vector Sies: €[1,1000]whereSy is
scene predicted for Image I of Test Dataset Dt

Objects = Scene Parsing Module(Train Dataset)

Net = NeuralNet(Objects, Class Labels)

Objects test = Scene Parsing Module(Test Dataset)

Scores = Net(Objects test)

while For each row of scores do
Scene,redictions[Ik] =Max[Scores (Row 1)]indeq-
ie[l,10]

end

Return Scene Predictions

We achieved a maximum accuracy of 82.1% using
the neural nets pproach.

5. Discussion

In each of the three approaches, we performed
many minor tweaks such as hyper parameter tuning in
neural networks, trying various word embeddings like
Word2Vec, GloVe in the NLP approach. The accuracy
reported above is the maximum accuracy obtained
through these approaches after experimentation with
the minor tweaks. In this section we discuss the various
experiments we performed, and also give intuition and

analysis of the varying accuracies we got through these
experiments.

5.1. TF - IDF Approach

This approach is overall a standard straight forward
algorithm with few places for experimentation. During
the calculation of the inverse document frequency,
smoothing is applied to ensure that under represented
classes are given a minor boost and the weight of
over represented classes is reduced. Considering our
numerator would be 10 (number of classes) and the
denominator would vary from 0 to 10, we tried out
various parameters for smoothing. However, not much
variation in the accuracy was observed with accuracies
ranging from 64.1% to the maximum 66.7%. The
maximum accuracy was obtained by adding 0.5 to the
numerator and 0.25 to the denominator.

5.2. NLP - Approach

In this approach we tried out several different ways
and the accuracy would vary significantly for every
tweak. The most important factor which drastically im-
proved accuracy was the choice of word embeddings.
We tried out the word2vec model, fasttext and glove vec-
tors. In all the three cases, we used pretrained models
from the gensim library. The models used were the most
recent state-of-the-art models and used for different pur-
poses.

Fast text vectors performed the worst of all. We
achieved an accuracy of 57.9% when trained with the
Word2Vec model, and an accuracy of 67.1% on using
the Glove 300 dimensional word vector model.

We believe that the size of the corpus used for
training the word vector model had a direct relation to
the generated quality of word vectors. Since the Glove
vector model was trained on a huge dataset obtained
from all wikipedia articles with a combined size of 1.7
gigabytes the model was better at detecting similar and
dissimilar words as compared to the Word2Vec model
trained on a corpus of 600 MB.

5.3. Neural Networks Approach

The neural networks approach performed the best of
all three with a much higher accuracy than the other two
approaches. There was a lot of scope for experimenta-
tion in this part.

First decision was to decide on the loss function,
which we finalized as the Softmax loss function since
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Figure 4. Loss vs Epoch

it was the most suitable one in this case. After a lot
of tweaking we set the learning rate to be 0.20, and
trained the neural network for 750 epochs. The network
trains faster with less data, as we saw that it converged
in around 100 epochs when we trained it on 1/10th of
the training data.

We tried a lot of different architectures of neural net-
works. Since this network had 335 input classes and
10 output classes and not a lot of training data we used
Fully Connected Neural Networks. Having more than 3
layers in the network, would gradually reduce the accu-
racy of the network on the test dataset. We used a two
layer neural network with 200 hidden neurons to get the
maximum accuracy.

We trained the neural network first on just 1/10th
of the training data, i.e 500 images of each class and
5,000 total images. We achieved a maximum accuracy
of 78.9% on the test set. On training with 5,000 images
of each class and 50,000 training class the accuracy
improved to 82.2%. This change of just about 4%
suggested that the dataset contained plenty of images
similar to each other.

A plot of the loss function over varying epochs can
be seen in the figure 4.

5.4. Comparison of the NLP Approach and the
TF - IDF Approach

The TF - IDF approach was a baseline model and was
guaranteed to perform the worst given it’s obvious short-
comings like not taking into consideration the similarity
of objects and scenes, and primitive purely statistical ap-
proaches.

We expected the NLP approach to perform better
than the TF-IDF approach. While it did outperform
the TF IDF approach by 1% it was still lesser than we
theoretically expected. One of the reasons we think is

Figure 5. Industrial Area

the addition of all object vectors allowed a considerable
amount of noise in the final vector by the addition of
several dissimilar objects.

5.5. Comparison of Neural Networks approach
and the NLP approach

The neural networks approach as expected outper-
formed the NLP approach by a considerable margin.
The main reason is the increase in expressibility of neu-
ral networks by the addition of hidden layers. Also the
noise due to a few common dissimilar objects from the
true scene label led to a corresponding decrease in accu-
racy in the NLP approach.

6. Results

We have tested our models on the Test Dataset of the
Places 365 dataset which contains 1000 images of the 10
classes selected. The basis of comparison of the models
is the number of images whose scene was correctly clas-
sified by the model. The results have been summarized
in Table 1.

Qualitatively, we give a few examples of different im-
ages and their scene labels as predicted by the model.
These examples can be seen in Figures 5, 6 and 7 with
their captions being the respective class labels.

7. Conclusion

From the project, we learned applications of neural
networks in different domains. We were able to under-
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| Method | Images Correctly Classified | Total Images Tested | Accuracy |
TF - IDF 667 66.7
NLP Approach 671 1000 67.1
Neural Networks 820 82

Table 1. Accuracies obtained with different approaches

Figure 6. Pond

Figure 7. Gas Station

stand how different tasks in Computer Vision are inter-
dependent. The improvements in one task could then be
used to solve various other tasks. In the end, we would
like to note a few things we could perform given more
computational capability.

1. The neural network approach should be scaled
up to include all 365 classes of the Places 365
dataset[3]. This model could be complicated and

would require a more complex architecture with
several hidden fully connected layers than the one
presented in this text. If the new model obtained on
training with 365 classes, could have as much accu-
racy, this new approach could set a new benchmark
in scene classification models.

The lack of compute power forced us to use low
resolution 256 * 256 images of the Places365 [3]
dataset. This led to an increased error on the scene
parsing task. An error in this task, gave an incor-
rect output to our various approaches and hence led
to a decreased accuracy. One of the future tasks
would be to train the scene parsing model on the
High Resolution (atleast 512 * 512, some images
even higher) dataset and use those outputs in our
approach.

The NLP approach can be modified slightly
wherein the similarity of the average of the
weighted object vectors present in an image and
the scene word vector could be measured. Cur-
rently, the sum of the word vectors is used, which
might give an excessive weight to objects quite dis-
similar to the appropriate scene. This case can be
avoided by taking the average as the weight of dis-
similar objects would still be quite low and the final
objects vector would be reasonably similar to the
scene vector.
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