
An Evaluation of Energy-Efficient Devices for Real-Time Inference of
Convolutional Neural Networks

Ajinkya Ghadge , Shashikant Ghangare and Nagaraj V. Dharwadkar1

Abstract— Significant advancements have been made in the
field of image and video recognition using Convolutional Neural
Networks. With their ability to generalize features and their
remarkable accuracy, CNNs have performed very well with
large image data-sets. Nonetheless, optimizing and deploying
compute-intensive image recognition and detection CNNs to
work in real-time on low-powered embedded devices is a signif-
icant challenge. We evaluate the performance of Raspberry Pi
3 Model B+, Intel Movidius Neural Compute Stick and Nvidia
Jetson-TX2 board for energy-efficient and real-time inference
performance on suitable CNN architectures. While the Jetson-
TX2 board consumes 7.5 watts of power, the NCS has a small
footprint of 1.2 watts. We also demonstrate the performance
improvement in inference time and efficiency, when openvino
and TensorRT optimizations are used for Intel NCS and Nvidia
Jetson TX2 respectively. Based on our experiments, we present
best suitable CNN architectures for real-time performance on
the two embedded devices.

I. INTRODUCTION

Recent developments in deep learning and convolutional
neural networks, have significantly improved image classifi-
cation and object detection accuracy of algorithms. Machine
learning has found its way in a lot of application areas
including Robotics and IoT. Despite an increase in the
accuracy, these networks have a large number of parameters
making the inference process compute-intensive, particularly
for embedded devices.

Typically, to inference in real-time using these large num-
ber of parameters, expensive GPUs or distributed systems are
used. IoT devices prefer to offload these compute-intensive
tasks to a High-performance machine, often deployed on a
cloud platform. This limits the application of CNNs when
using with embedded devices, which use very little power
and use limited bandwidth. Additionally these devices are
constrained by the need to operate with very-low latency in
a distributed environment.

Some of the software frameworks like Caffe and Tensor-
flow have been ported to work on embedded platforms like
Raspberry Pi and Intel Joule, but processing can be slow due
to limitations of hardware. To solve these challenges, there
are energy-efficient inference platforms like Intel Movidius
Neural Compute stick and Nvidia Jetson TX2, which have
dedicated hardware built to suit the needs of deploying deep
neural networks. The Jetson TX2 board consumes 7.5 watts
of power and the NCS consumes 1.2 watts.

We present benchmarks for the two devices and optimal
CNN architectures for making real-time predictions. We
also measure the energy efficiency with respect to making

*This work was not supported by any organization

real-time predictions on the two-devices to conclude the
suitability of the devices for various embedded applications.
Additionally, we demonstrate the use of TensorRT and
OpenVino based software optimization to improve inference
performance and energy efficiency on the two devices.

Fig. 1. Embedded devices used: Jetson TX2 Module, Intel Movidius NCS
and Raspberry Pi 3 B+

II. RELATED WORK

A benchmark for power consumption on low-power em-
bedded devices for Caffe and Tensorflow is given in [1].
Experimental setup to measure power consumption by the
NCS, Raspberry Pi and Intel Joule board for a forward pass
on AlexNet, GoogLeNet and VGG architectures for image
classification is also explained. However, the study lacks
measurements on optimized CNN implementations for real-
time vision applications. Additionally, it doesn’t include any
major detection architectures.

Existing CNN inference benchmarks do not take into
account the special case of real-time performance. Neither
there is a direct comparison of Nvidia Tegra based Jetson
TX2 and Intel Movidius VPU based NCS, nor has power
consumption been tested in relation to frames per second
achieved in the case of video. Additionally, there is no
analysis of using software optimization for obtaining real-
time performance.

[2]Another work, featuring first comprehensive techni-
cal overview of the VPU(Vision Processing Unit) in the
context of Intel NCS. The paper explains the architecture
and organization of the Intel NCS, the motivations behind
creation of the NCS API and the principles used for off-
loading of inference using a USB port to the NCS. There
is also a comparison of inference on CPU, GPU and the
VPU for accuracy. However it lacks comparison of other



contemporary inference platforms for power consumption
and achievable frame rates for CNN architectures.

Fig. 2. Highest and Lowest FPS reported by Corresponding papers

Fig. 3. Memory (Mb) usage for each model. Note that we measure total
memory usage rather than peak memory usage. Moreover, we include all
data points corresponding to the low-resolution models here. The error bars
reflect variance in memory usage by using different numbers of proposals
for the Faster R-CNN and R-FCN models (which leads to the seemingly
considerable variance in the Faster-RCNN with Inception Resnet bar).

Comparison of Faster-RCNN, R-FCN and SSD object-
detection architectures provides a guide for selecting a
detection architecture that achieves speed/memory/accuracy
balance for a given application. The work also investigates
various ways to trade accuracy for speed and memory usage
in modern convolutional object detection systems. The one
of a kind study successfully compensates for different base
feature extractors, different default image resolutions as well
as different hardware and software platforms. However, it
not only lacks a comparison and analysis with state of
the art Yolo object-detection architecture but also does not
benchmark on an embedded device.

III. EXPERIMENTAL SETUP

A. Hardware

With an embedded system-on-module (SoM) containing
dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57,
8GB 128-bit LPDDR4 and integrated 256-core Pascal GPU
the NVIDIA Jetson TX2 is useful for deploying computer
vision and deep learning tasks. The Jetson TX2 runs Linux
and provides greater than 1TFLOPS of FP16 compute perfor-
mance in less than 7.5 watts of power. It supports most major
deep learning frameworks like Caffe, Tensorflow, MXNet
and Torch.

The Intel NCS is a tiny, fan-less USB device that can be
used with a host machine only to make prediction/inference.
It is based on Myraid 2 MA2450, also referred to as
VPU(Vision Processing Unit). Designed as a 28-nm co-
processor, Myraid 2 VPU provides high-performance ten-
sor acceleration. The chip dissipates less than 1W. The
Myraid 2 VPU features 12 highly-parallelizable vector pro-
cessors, name Streaming Hybrid Architecture Vector En-
gines(SHAVE). Each of these can be operated independently.
Applications communicate with the VPU using the USB
3.0 Interface. The NCS SDK provides parsers only for
Caffe and Tensorflow, with some limitations on the network
architecture. Python and C++ based API is provided to
perform these tasks.

B. Software

The Intel Movidius Neural Compute SDK (NCSDK) is
used in two distinct modes to support development and
deployment. The Full SDK mode installs both the toolkit and
API framework on the host device. The installation process is
slower but it provides the tool-chain to generate a graph file,
that can be later used for deployment. Full SDK can also be
used for profiling of the neural networks. The API-only mode
provides an API framework in Python and C++, that can be
used for loading the generated graph file, sending images
to the device and making predictions on the sent images.
Graph file, is a file containing weights optimized by using
the NCSDK. Based on dependencies, API-only mode can be
compiled on various embedded platforms. As a host for the
NCS, we are using a laptop device with Intel i7-7700 running
Ubuntu 16.04.4. Role of host machine is limited to sending
data to the NCS, the forward pass is entirely computed on the
NCS and similar performance can be expected when using
any other device with NCS connected via a USB 3.0.

Openvino, extends computer vision (CV) workloads across
Intel hardware, maximizing performance. It supports execu-
tion on Intel Movidius Neural Compute Stick and provides
optimized calls for computer vision standards including
OpenCV, OpenCL, and OpenVX.

The Jetson TX2 runs an optimized version of Ubuntu
16.04. There is no additional software that needs to be
installed for inference on the Jetson TX2. Caffe is already
compiled in the OS provided. Therefore, the weights file
and the network model file can be used to make inference.
Nvidia provides software optimization for inference in form
of TensorRT which is also a part of the OS provided for the
Jetson TX2. Add this here without using ”we” Each of these
can be operated independently. Applications communicate
with the VPU using the USB 3.0 Interface.

For development we are using Ubuntu 16.04 on a x86
architecture machine. We are able to compile the NCSDK in
Full SDK mode.

Write this in tabular for as specific setup when working
with NCS For working with the NCS, the batch size has to be
set to 1, and the number of inupts to the network should also
be 1. This is a constraint specified by the SDK. Also, there
is no support for input parameters in the input layer. This



Fig. 4. Keweisi KWS-V20 USB Power Doctor and its components

should be changed to input shape. Input name in the input
layer should always be ”data”. There is also a limitation on
the size of graph file, which should be less than 320 MB.
Additionally, the Intermediate layer buffer size should be
less than 100 MB and scratch memory size should be less
than 112 KB. Unlike the NCS, there are no changes that are
needed to run the CNNs on the Nvidia Jetson TX2 platform.

For our benchmark we have chosen AlexNet and
GoogLeNet as they are standard, well-documented architec-
tures that have shown promising results on a wide range of
data-sets. We have also included SqueezeNet, considering
the memory limitations of the NCS. SqueezeNet generates
50 times lesser parameters as compared to AlexNet with
same accuracy. We have trained these architectures on the
ImageNet dataset. For object detection, we have chosen
SSD on MobileNet considering the trade-of between speed,
accuracy and memory needed. Fig 1 shows the highest and
lowest FPS reported by the corresponding papers. Although
not an apples to apples comparison due to different mAP, it
gives a fair idea of achievable FPS, and suitable architectures
for object detection. Fig 2 shows the average memory usage
for each model. SSD on MobileNet has the lowest footprint.

C. Power Measurement

To account for power consumption, which is critical for
embedded devices. While the Jetson TX2 has an inbuilt
mechanism to comprehensively measure power consumption,
we use an USB Charger Doctor to measure power consump-
tion of the Intel Movidius NCS.

1) Power Measurement on Jetson TX2: The TX2 module
has two INA3221 power monitors the carrier board has two
more INA3221. The system on module includes three power
rails VDD-IN,VDD-GPU and VDD-CPU. Since we only
need to measure the power consumed by the system on
module(SoM), we will only measure power on the power
rail VDD-IN. Other rails that the VDD-IN powers are VDD-
SYS-CPU, VDD-SYS-GPU, VDD-SYS-DDR, VDD-SYS-
SOC and VDD-4V0-WIFI. Since we are turning the wifi

module off, there is no power consumption by the VDD-
4V0-WIFI. VDD-SYS-CPU and VDD-SYS-GPU are rails
for CPU and GPU, while VDD-SYS-DDR and VDD-SYS-
SOC are rails for ram and system on chip. Hence, measuring
power consumed can be measured by using the rail VDD-
IN. The shipped OS provides a python script named Jet-
sonTX2power.py to measure voltage and current reading on
different rails.

2) Power Measurement for Intel Movidius NCS: Previ-
ous attempts to measure power consumption on the NCS
have used INA219 IC for power measurement. While the
IC is suitable for measurement of power on a variety of
embedded devices, we needed a USB interface to measure
the power consumption on the NCS, which is not readily
found for the IC. Alternatively, we have used the USB
charger doctor, [3]Keweisi KWS-V20. The device comes
with an OLED screen that displays the current and voltage
values. The voltage range for the device is 4-20V and the
current measurement range is 0-3A. Additionally, charge up
to 99,999 can also be measured. The device contains a USB
male connector that connects to the power source and a USB
female connector that can be used to connect other devices,
in our case the NCS. Since the NCS voltage and current value
fall within the range of this device and its self consumption
is meager 3.3 mA, it is a convenient choice to measure NCS
power consumption.

IV. BENCHMARKING

Since, we are using standard CNN architectures and
datasets, the accuracy for each of these is defined. There are
no changes to the architecture, although optimization of the
models is done using openvino and tensorrt only to improve
inference time. Hence classification and detection accuracy
of the chosen architectures does not change. There are three
power operating modes on the Jetson TX2 board Max-Q,
Max-P and Max-Clock. While the Dynamic Voltage and
Frequency Scaling (DVFS) permits Jetson TX2s Tegra Parker
SoC to adjust clock speeds at run time according to user load
and power consumption, the Max-Q configuration sets a cap
on the clocks to ensure that the application is operating in the
most efficient range only. Max-P, the other preset platform
configuration, enables maximum system performance in less
than 15W. Max-Clock gives the best performance with
highest power consumption.

The optimizations of TensorRT and Openvino are subject
to the various layers supported by these frameworks. Cur-
rently few of the layers used in SSD and Yolov2 are not
supported by TensorRT and Openvino. Some people have
demonstrated possible work arounds by using custom layers,
or replacing unsupported layers with alternative supported
layers. These techniques are unsuitable for our benchmark
process. This leaves us with no hardware specific optimiza-
tion for Object detection architectures in this benchmark.

A. Measuring Efficiency

Frames/Second is often used as a measure of performance
with respect to real-time scenarios in computer vision. Real-



Fig. 5. Inference time for various devices and architectures

Fig. 6. Power consumption for various devices and architectures

time performance is said if a video stream can be processed
between a range of 15-30 FPS or more. For measuring
efficiency, we measure average power consumed during
inference. The final measure of efficiency can be frame rate
per unit power, which would be frames/second/watt.

B. Benchmark

The Jetson TX2 with tensorRT optimization performs the
best for image classification tasks. Very high frame-rates
are achieved for all the classification networks. There is a
small difference in the power consumption, but overall the
Jetson TX2 achieves significantly higher frame rate. The
Intel NCS consumes significantly less power, but real-time
performance is achieved only for SqueezeNet architecture.
SSD-MobileNet comes close to real-time performance.

We also found in our observations that the Openvino based
optimization are not as significant as the TensorRT.

V. CONCLUSION

Jetson TX2 with tensorRT is highly suitable for high-
performance real-time tasks. It can be used for real-time
inference of deeper CNN architectures like GoogLeNet.
The Intel NCS shines when using SqueezeNetv1.1 for
classification tasks and MobileNet-SSD for detection. For
SqueezeNetv1.1, it achieves a balance of efficiency and
practical usage with value of 42.57 images/sec/watt. For
applications requiring 15-20 FPS classification rate and very

less power consumption, the Intel NCS should be preferred.
For tasks requiring higher accuracy, where larger CNNs are
used, the Jetson TX2 can be used.

VI. PERFORMANCE IMPROVEMENT ON RASPBERRY PI

For comparison with previous benchmark of FPS achieved
on Intel Movidius on Raspberry Pi, we look at the perfor-
mance achieved for same neural architecture and the best
FPS we achieved for same classification accuracy. Some
important considerations here are that we have used Neural
Compute Stick SDK-2 as compared to the SDK-1 used by the
previous authors, there are no performance related changes
documented.

Architecture GoogleNet
(previous benchmark)

GoogleNet
(our benchmark)

SqueezeNetv1.1
(best classification)

FPS 6.25 7.75 19.12

VII. FUTURE WORK

With the pace of current research, new image classification
and object detection architectures are coming up. Newer fam-
ily of architectures like SquezeNext, MobileNetv2, YoloV3
have shown improvement in both accuracy and inference
speed. Not only can the NCS be used in parallel with
each other, NCS can also be used in tandem with the
Jetson TX2 as it is possible to compile the SDK on the
Jetson TX2. Frame-rates can also be improved by efficient
memory management techniques and concurrency of CPU
and GPU by using double-buffering. Finally, with custom-
layer implementations, un-supported CNN layers in YoloV3
and MobileNet-SSD can be optimized using TensorRT.

REFERENCES

[1] D. Penna, A. Forembski, Xiaofan Xu, D. Moloney Benchmarking of
CNNs for Low-Cost, Low-Power Robotics Applications, 2017, RSS
2017 Workshops

[2] Exploring the Vision Processing Unit as Co-Processor for Inference
Sergio Rivas-Gomez, Antonio J. Pena, David Moloney, Erwin Laure,
Stefano Markidis, 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops

[3] https://goughlui.com/2016/08/20/review-teardown-keweisi-kws-v20-
usb-tester/


