BFS and DFS in graph
Graph data structure
Graph contains nodes connected to one another, there isn’t a structure to connections.
Terminology
- Vertex (Node)
- Edge (a connection between two nodes, can be weighted)
- Weight
- Path (a way of traversing from node a to node b)
- Cycle (a self connecting path for a node: a->b->c->d->a)
Implementing Graph
Adjacency Matrix
In a matrix, each entry in x and y axis respectively corresponds to a node. If a edge exists between two nodes, we write the weight at the position (x,y).
Adjacency List
Since adjacency matrix can be sparse, and hence space-wise inefficient. Better, use dictionary of dictionaries.
Defining class for vertex:
Vertex Class:
Each node contains an Id and a dictionary of each connection and corresponding edge weight
class Vertex:
def __init__(self,key):
self.id = key
self.connectedTo = {}
def addNeighbor(self,nbr,weight=0):
self.connectedTo[nbr] = weight
def __str__(self):
return str(self.id) + 'connected To ' + str([x.id for x in self.connectedTo])
def getConnections(self):
return self.connectedTo.keys()
def getId(self):
return self.id
def getWeight(self,nbr):
return self.connectedTo[nbr]
Graph Class:
Maitain a list of vertices in the Graph, since each Vertex maintains information about edges
class Graph:
def __init__(self):
self.vertList = {}
self.numVertices = 0
def addVertex(self,key):
self.numVertices = self.numVertices+1
newVertex = Vertex(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self,n):
if n in self.vertList:
return self.vertList[n]
else:
return None
def __contains__(self,n):
return n in self.vertList
def addEdge(self,f,t,weight=0):
if f not in self.vertList:
nv = self.addVertex(f)
if t not in self.vertList:
nv = self.addVertex(t)
self.vertList[f].addNeighbor(self.vertList[t],weight)
def getVertices(self):
return self.vertList.keys()
def __iter__(self):
return iter(self.vertList.values())
Depth-First Search:
def dfs(self,start,visited = None):
if visited == None:
visited = set()
visited.add(start)
vert = self.getVertex(start)
tempset = vert.getConnections()
l = set()
for i in tempset:
l.add(i.getId())
for nex in l-visited:
self.dfs(nex,visited)
return visited
Breadth-First Search:
Use FIFO,
- for better performance use deque instead of list
- use set to maintain visited nodes
def bfs(self,start):
q = collections.deque()
q.append(start)
visited = set()
k = list()
while(q):
x = q.popleft()
k.append(x)
visited.add(x)
vert = self.getVertex(x)
tempset = vert.getConnections()
for i in tempset:
if i.getId() not in visited:
q.append(i.getId())
return(k)
Driver Code:
g = Graph()
for i in range(6):
g.addVertex(i)
g.vertList
g.addEdge(0,1,5)
g.addEdge(0,7,2)
g.addEdge(1,2,2)
g.addEdge(1,9,2)
g.addEdge(2,3,4)
g.addEdge(3,5,9)
g.addEdge(5,0,7)
for v in g:
for w in v.getConnections():
print("( %s , %s )" % (v.getId(), w.getId()))
print(g.dfs(0))
print(g.bfs(0))
Output:
( 0 , 1 )
( 0 , 7 )
( 1 , 2 )
( 1 , 9 )
( 2 , 3 )
( 3 , 5 )
( 5 , 0 )
{0, 1, 2, 3, 5, 7, 9}
[0, 1, 7, 2, 9, 3, 5]